INNO-406, a novel BCR-ABL/Lyn dual tyrosine kinase inhibitor, suppresses the growth of Ph+ leukemia cells in the central nervous system, and cyclosporine A augments its in vivo activity.

نویسندگان

  • Asumi Yokota
  • Shinya Kimura
  • Satohiro Masuda
  • Eishi Ashihara
  • Junya Kuroda
  • Kiyoshi Sato
  • Yuri Kamitsuji
  • Eri Kawata
  • Yasuyuki Deguchi
  • Yoshimasa Urasaki
  • Yasuhito Terui
  • Martin Ruthardt
  • Takanori Ueda
  • Kiyohiko Hatake
  • Ken-ichi Inui
  • Taira Maekawa
چکیده

Central nervous system (CNS) relapse accompanying the prolonged administration of imatinib mesylate has recently become apparent as an impediment to the therapy of Philadelphia chromosome-positive (Ph+) leukemia. CNS relapse may be explained by limited penetration of imatinib mesylate into the cerebrospinal fluid because of the presence of P-glycoprotein at the blood-brain barrier. To overcome imatinib mesylate-resistance mechanisms such as bcr-abl amplification, mutations within the ABL kinase domain, and activation of Lyn, we developed a dual BCR-ABL/Lyn inhibitor, INNO-406 (formerly NS-187), which is 25 to 55 times more potent than imatinib mesylate in vitro and at least 10 times more potent in vivo. The aim of this study was to investigate the efficacy of INNO-406 in treating CNS Ph+ leukemia. We found that INNO-406, like imatinib mesylate, is a substrate for P-glycoprotein. The concentrations of INNO-406 in the CNS were about 10% of those in the plasma. However, this residual concentration was enough to inhibit the growth of Ph+ leukemic cells which expressed not only wild-type but also mutated BCR-ABL in the murine CNS. Furthermore, cyclosporine A, a P-glycoprotein inhibitor, augmented the in vivo activity of INNO-406 against CNS Ph+ leukemia. These findings indicate that INNO-406 is a promising agent for the treatment of CNS Ph+ leukemia.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

NEOPLASIA NS-187, a potent and selective dual Bcr-Abl/Lyn tyrosine kinase inhibitor, is a novel agent for imatinib-resistant leukemia

Although the Abelson (Abl) tyrosine kinase inhibitor imatinib mesylate has improved the treatment of breakpoint cluster region–Abl (Bcr-Abl)–positive leukemia, resistance is often reported in patients with advanced-stage disease. Although several Src inhibitors are more effective than imatinib and simultaneously inhibit Lyn, whose overexpression is associated with imatinib resistance, these inh...

متن کامل

NS-187, a potent and selective dual Bcr-Abl/Lyn tyrosine kinase inhibitor, is a novel agent for imatinib-resistant leukemia.

Although the Abelson (Abl) tyrosine kinase inhibitor imatinib mesylate has improved the treatment of breakpoint cluster region-Abl (Bcr-Abl)-positive leukemia, resistance is often reported in patients with advanced-stage disease. Although several Src inhibitors are more effective than imatinib and simultaneously inhibit Lyn, whose overexpression is associated with imatinib resistance, these inh...

متن کامل

NS-187 (INNO-406), a Bcr-Abl/Lyn Dual Tyrosine Kinase Inhibitor

Protein kinases catalyze the transfer of the gamma-phosphoryl group of adenosine triphosphate (ATP) to the hydroxyl groups of protein side chains, and they play critical roles in regulating cellular signal transduction and other biochemical processes. They are attractive targets for today's drug discovery and development, and many pharmaceutical companies are intensively developing various kind...

متن کامل

Evaluation of the Effect of Curcumin and Imatinib on BCR-ABL Expression Gene in Chronic Human k562 Cells

Background and Aims: Detection of overexpression in tumor-inhibiting genes provides valuable information for leukemia diagnosis and prognosis. Chronic myeloid leukemia (CML) is a stem cell disorder determined by a well-defined genetic anomaly involving BCR-ABL translocation in the Philadelphia chromosome. Curcumin is a chemo-preventive agent for the primary cancer targets, such as the breast, p...

متن کامل

Centrosome aberrations and G1 phase arrest after in vitro and in vivo treatment with the SRC/ABL inhibitor dasatinib.

BACKGROUND Dasatinib is a multitargeted inhibitor of ABL, the SRC family, and other tyrosine kinases. We sought to evaluate the effects of this drug on cell proliferation, centrosomes, mitotic spindles, and cell cycle progression in vitro and in vivo. DESIGN AND METHODS Human dermal fibroblasts, Chinese hamster cells, human osteosarcoma cells, and blood and bone marrow mononuclear cells from ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Blood

دوره 109 1  شماره 

صفحات  -

تاریخ انتشار 2007